sábado, 25 de septiembre de 2010

AXIOMAS DE LA PROBABILIDAD

PROBABILIDAD

En ocasiones cuando se habla de probabilidad o posibilidad de que un evento ocurra, se pierde la credibilidad acerca del evento en cuestión, pero ¿es posible tener siempre la certeza total en todo proyecto o actividad que se desea realizar?, es muy difícil tenerla, debido a que el llevar a efecto un proyecto cualquiera por más simple que este sea, éste está sujeto a una gran diversidad de factores que afectan su ocurrencia, ¿entonces que es lo más aconsejable para predecir su ocurrencia?, la probabilidad es la que nos ayuda en estos casos, ya que basándose en estadísticas, podemos cuantificar la posibilidad de ocurrencia de los eventos y por consiguiente tomar una buena decisión basados en esta información.
  
CONCEPTO.

La probabilidad se encarga de evaluar todas aquellas actividades en donde se tiene incertidumbre acerca de los resultados que se pueden esperar, esto quiere decir que la probabilidad  está presente en casi en todas las actividades que se pretenda realizar, ejemplos:
-Cualquier proyecto de Ingeniería o de otras áreas
-Competencias deportivas
-Juegos de azar, etc., etc.

 ¿Cómo podemos calcular probabilidades?
1. Haciendo uso de las estadísticas.
En este caso, se hace uso de la información que se ha acumulado acerca del evento que nos interesa, y después de esto se procede a calcular las probabilidades requeridas.

Ejemplo. Determine la probabilidad de que en cierta línea de producción se manufacture un producto defectuoso, si se toma como referencia que la producción de la última semana en esta línea fue de 1,500 productos, entre los que se encontraron 8 productos defectuosos.

p(producto defectuoso) = No de productos defectuoso /Total de productos producidos en la semana
                                       = 18 / 1500 = 0.012

Lo anterior nos indica que es muy probable que 1.2 productos de cada 100 que se manufacturen en esa línea serán defectuosos.

¿Porqué se utilizó para calcular las probabilidades la información de la semana inmediata anterior?. Debido a que esta refleja la situación que guarda actualmente la producción de la línea mencionada.

2. Basándose en la experimentación. Hay casos en los que después de repetir un número muy grande de veces un experimento, es posible determinar las probabilidades de ocurrencia de algunos eventos, tales como: La probabilidad de que aparezca águila al lanzar una moneda equilibrada, la probabilidad de que aparezca el número 3 en un dado, etc., etc.

Ejemplos:

p(águila) =1/2 = 0.5

p(aparezca el número 3)= 1 / 6 = 0.1666

AXIOMAS Y TEOREMA

 AXIOMAS
Los axiomas de probabilidad son las condiciones mínimas que deben verificarse para que una función definida sobre un conjunto de sucesos determine consistentemente sus probabilidades. Fueron formulados por Kolmogórov en 1933.
Dado un conjunto de sucesos elementales, Ω, sobre el que se ha definida una σ-álgebra (léase sigma-álgebra) σ de subconjuntos de Ω y una función P que asigna valores reales a los miembros de σ, a los que denominamos "sucesos", se dice que P es una probabilidad sobre (Ω,σ) si se cumplen los siguientes tres axiomas.

 Primer axioma

La probabilidad de un suceso A es un número real mayor o igual que 0.
P(A) \geq 0

Segundo axioma

La probabilidad del total, Ω, es igual a 1, es decir,
P(\Omega) = 1\!

 Tercer axioma

Si A_1, A_2, \dots son sucesos mutuamente excluyentes (incompatibles dos a dos, disjuntos o de intersección vacía dos a dos), entonces:
P(A_1 \cup A_2 \cup \cdots) = \sum P(A_i).
Según este axioma se puede calcular la probabilidad de un suceso compuesto de varias alternativas mutuamente excluyentes sumando las probabilidades de sus componentes.
En términos más formales, una probabilidad es una medida sobre una σ-álgebra de subconjuntos del espacio muestral, siendo los subconjuntos miembros de la σ-álgebra los sucesos y definida de tal manera que la medida del total sea 1. Tal medida, gracias a su definición matemática, verifica igualmente los tres axiomas de Kolmogórov. A la terna formada por el espacio muestral, la σ-álgebra y la función de probabilidad se la denomina Espacio probabilístico, esto es, un "espacio de sucesos" (el espacio muestral) en el que se han definido los posibles sucesos a considerar (la σ-álgebra) y la probabilidad de cada suceso (la función de probabilidad).

Propiedades que se deducen de los axiomas

De los axiomas anteriores se deducen otras propiedades de la probabilidad:
  1.  P(\varnothing)=0 donde el conjunto vacío (\varnothing) representa en probabilidad el suceso imposible
  2. Para cualquier suceso  P(A) \leq 1
  3.  P(A^c)=1-P(A)\;\!
  4. Si  A \subseteq B entonces P(A) \leq P(B)
  5.  P(A \cup B)= P(A) + P(B) - P(A \cap B)

Ejemplos

Como ejemplo se puede tomar como espacio muestral a los posibles resultados al arrojar un dado corriente \Omega = \left \{ 1, 2, 3, 4, 5, 6 \right \} , tomaremos como σ-álgebra todos los subconjuntos posibles de Ω (que en matemáticas se denota por \mathcal {P}(\Omega)) y como función de probabilidad

 P(A)= \frac {\# A} {6}
donde \# A representa el número de elementos del conjunto A.
Es fácil comprobar que esta función verifica los tres axiomas de Kolmogórov y, por tanto, consituye una probabilidad sobre este conjunto.
  1.  P(A)= \frac {\# A} {6} \geq 0, puesto que es el cociente de dos números positivos
  2.  P(\Omega)=P \left ( \left \{ 1, 2, 3, 4, 5, 6 \right \} \right )=  \frac { \# \left \{ 1, 2, 3, 4, 5, 6 \right \} } {6} = \frac {6} {6} = 1
  3. Si  A= A_1 \cup A_2 \cup A_3 \cup \cdots de tal manera que  A_i \cap A_j = \varnothing \quad \forall i \ne j entonces
\# A = \# A_1 + \# A_2 + \# A_3  + \cdots
con lo que P(A)=\sum P(A_i)


TEOREMAS




TEOREMA 1. Si f es un evento nulo o vacío, entonces la probabilidad de que ocurra f debe ser cero.



A

                                                                 p(f)=0
                                                                                                                  



DEMOSTRACIÓN:
Si sumamos a fun evento A cualquiera, como f y A son dos eventos mutuamente excluyentes, entonces p(AfÈ)=p(A) +p(f)=p(A). LQQD


TEOREMA 2. La probabilidad del complemento de A, Ac debe ser, p(Ac)= 1 – p(A)













DEMOSTRACIÓN:
Si el espacio muestral d, se divide en dos eventos mutuamente exclusivos, A y Ac luego d=AÈAc, por tanto p(d)=p(A) + p(Ac) y como en el axioma dos se afirma que p(d)=1, por tanto, p(Ac)= 1 - p(A) .LQQD

TEOREMA 3. Si un evento A Ì B, entonces la p(A) £ p(B).





No hay comentarios:

Publicar un comentario